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Preface 5 December 1974

This report is an analysis of several signal generation

algorithms which were proposed and in some cases used in the
Acoustic Signal Generation System (ASGS), a millti-minicomputer
simulation facility developed at NAVSURFWPNCEN. In addition
to deriving the spectrum of the output for each of the algorithms
and comparing their performance, practical aspects of implementation
for each are discussed. The report will be of interest to those
concerned with the design of digital signal generation systems.

The research reported herein was partially funded under
the Digital Acoustic Simulator System, Task Number A370-370K/W2144-170.

In its original form, this paper was submitted to the Graduate
Faculty of the University of Maryland in partial fulfillment of

4 the requirements for the degree of Doctor of Philosophy in
Electrical Engineering.

ROBERT WILLIA 1O, II

MICHAEL H. STRLING.
( By direction
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CHAPTER I

INTRODUCTION

The synthesis of specific analog-signals has been

accomplished by analog.systems for some time. Difficulty

in- control over such systems, the inherent lack of

uniformity and reproducibility in their operation, and

other factors such as reliability problems have, however,

limited the degree of sophistication which can be

achieved in analog signal synthesis. In addition, there

-is a lack of multiplexing capability, so that many parallel

replicas of a circuit are generally required. Hybrid
° systems employing parametrically programmable analog

devices controlled by a computer are-able to surmount

some of the difficulties of purely analog systems, but

still have problems in reliability and reproducibility

of*results.

Although signal synthesis by an all digital system

has been possible for a decade or more, the raw computing

power necessary to perform a reasonably sophisticated

Job in real time has only recently become economically

practical. Non real time techniques are more often than

not impractical from a user's time standpoint (only-

in rare cases is one willing to spend days generating

minutes of signal or le s), or completely inapplicable

for on line requirements. The recent availability-of

1
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inexpensive, very fast and very reliable digital

hardware, 'together with recent advances in digital signal

processing techniques such as the FFT algorithm, have

resulted in the feasibility of very sophisticated signal

synthesis by all digital systems. By utilizing pseudo-

random sequence generators to create the "random"

components of signals, completely controllable and

reproducible results may be had.

As might be expected, the increased versatility and

reliability that is achievable with an all digital

system is not completely free-from encumbrances. -Since

all representations of time functions and/or of

spectral functions must be discrete and of finite

duration, aliasing problems are inherent in every

operation. In addition, various "clever" implementation

algorithms that appear on the surface to be economically

desirable usually compound the sampled data system

problems, and leave considerable doubt as to whether
I

the resultant synthesized signal has the desired

characteristics. It is these latter considerations to

which this paper is addressed.

In general, signals may have both transient components

(finite energy) and steady state components (finite power).

This paper is concerned with the synthesis of steady

state components, and in particular those that are

either composed of one or more discrete frequency elements,

2
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or are random processes characterized by a power density

spectrum which varies relatively slowly in frequency.

These two categories will be referred to as narrowband

and broadband components, respectively. It will be

assumed that during synthesis of narrowband components,

the specified frequency may be randomly perturbed by

a small percentage to generate components with narrow

but non-zero bandwidths.

The signals to be synthesized are divided into three

groups. Chapter 2 discusEes the generation of the

broadband signals characterized by a finite, reasonably

well behaved power spectral density. Chapter 3 considers

the generation of signals having discrete or quasi-

discrete spectra, and in particular the generation of

sums of such signals by inverse FFT techniques. As an

alternative, Chapter 4 presents a time domain technique

for sums of single frequency signals whose frequencies

are harmonically related; that is, all signal frequencies

in a set are integer multiples of some fundamental

frequency foe In all cases the objective is to develop

and evaluate the performance of practical, economically

implementable algorithms rather than to concentrate on

determining algorithms that are optimum from a purely

mathematical viewpoint.

The glossary on page vi summarizes the symbols

used in the thesis, In addition, use is made of the

3
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"sine" function, defined by

~ ~ sin wusine u si s
Tu

since the form (sinwu)Y/u is encountered very frequently

in "blocked" data (i.e., FFT) processing. A similar

form also encountered quite often is (sinwu)/(sinw),

which will be designated irn this paper as the "sind" function;

sindNtU) 1 sin(uu 1.2
Ssinhju

which is shown in Appendix A to result from a finite

sum of exponentials

N-I N2 -1

e - ew sindN(u) 1.3
n- 0

Appendix B derives a useful pair of relations between the

sind function and infinite sums of regularly spaced sine

functions.

it will be assumed at the outset that the functions

dealt with in the text are sufficiently well-behaved

to permit the interchange of summation and integration

operations as required, and other minor mathematical

liberties which are taken on occasion.

4
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CHAPTER II

BROADBAND SIGNAL SYNTHESIS

A. General 'Considerations,

The problem ccnsidered in'this chapter is the

generation or synthesis by a digital system of random

signals having a power spectral density PSD, that is

controllable over a band of interest W from -B to

B Hertz. Since a completely arbitrary control

-capability would imply an infinite number of parameters

to specify, it will be assumed that the desired degree

of detail will be commensurate with a set of N or less

control parameters Yk' k - 0, ... , N-1. The objective

* 'is the'determination of a signal generation algorithm

defined on the Y Buch that the PSD of the generated

* signal y(t) over the required band is a- reasonably

well behaved function having the desired overall form.

As an example, the signal generation algorithm could

be passing white Gaussian noise through -a general

digital filter of order N, with the Yk determining

the pole/zcro locations of the filter.

A further assumption is made that the desired first

order statistics of the output signal be Gaussian. This

is a normal requirement for most applications, since

natural processes tend to exhibit Gaussian statistics.

5
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For this reason it will also be assumed that the digital

synthesizer system hardware is capable Qf generating

samples from a Gaussian process efficiently, Actually,

for most practical applications, an approximation to

the Gaussian is adequate, such as the sum of ,4 or more

independent samples ,from a uniform process.

If white Gaussian noise (WGN) is all that is required

for the output signal (power density spectrum equals

a constant across the band of interest), then the mhost

straightforward and efficient method of generating

the desired signal is to output samples directly from

the Gaussian generator, with at most a multiplication

K by a scale factor to adjust the output power level.

Sidce the Fourier transform of a white Gaussian process

is also a white Gaussian process (exhibiting the proper

symmetries if the input is real), specification of the

signal in the frequency domain (to be followed by an

inverse Fourier transform) requires the same number of
V

independent Gaussian samples as in the time domain. Thus

the computational effort required to perform the inverse

Fourier transform is superfluous.

• If, on the other hand, a Gaussian signal with a

colored spectrum is desired, both time domain techniques

utilizing recursive or convolutional filters and frequency

domain techniques utilizing the discrete Fourier transform

have their application. If a relatively simple spectral

shaping is required, passing the white Gaus3ian (time)

6
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samples obtained directly from the generator through a

time domain filter iay be adequate. This approach, however,

has two rather severe limitations. The computational load

exceeds the equivalent FFT implementation load if the filter

function required has more than about 5 to 10 poles or

zeroes. Worse yet, design of a time domain filter to

implement a given frequency domain specification is not

straightforward, and may become impractical if the

spectral shaping must be varied in real time. The time-

domain filtering approach is practical thenonly if very

simple shaping is desired, or most profitably, if the

desired shaping is naturally specified in terms of a few

recursive filters (high, low or bandpass functions with

rolloff in multiples of 6 db/oct.) Computational load

for convolutional filters becomes excessive beyond a few

zeroes, so that the required convolution is often per-

formed by transforming to the frequency domain,

multiplying, andtransforming back. This-of course

becomes the same thing as frequency domain filtering.

If considerable detail in the spectral power density is

required, frequency domain filtering techniques utilizing

an FFT processor become quite attractive. The desired power

spectral density can be specified at N equally spaced points

from -B to B in the frequency domain, or if an impulse

response or autocorrelation function is given, the equivalent

spectral weighting function can be easily obtained by

7
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a forward transform. Once some threshold value of N

-has been passed and the decision to use FFT'techniques

has been made, the computational load is only weakly

dependent on degree of-detail implemented. The major

disadvantage of the FFT methods, though, is the fact

that since processing must be done in blocks rather

large amounts of memory are required. The memory

requirements are, in fact, proportional to the degree

of detail required, i.e., the parameter R,,

B. Frequency Domain Filtering Algorithm

The most straightforward approach to synthesis

of broadband signals by FFT is to implement directly

the frequency filtering diagram shown in Figure 2.1.

First white Gaussian noise is generated in the time

domain as before. The forward transform of a block

of N samples is computed, yielding N/2 single-sided

complex frequency coefficients. These are then

multiplied by the corresponding coefficients of the

filter weighting function. The inverse FFT of the

result yields the desired filtered time samples.

However, to avoid erroneous results due to circular

convolution, the actual filtering implementation must

incorporate either of the "overlap-save" or the "overlap-

add" computational techniques.1 In either of these

schemes, the desired filter impulse response of,

for example, N non-zero samples must be augmented by

8
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a block-of K zeroes to produce a total block size of

M-= N + K time samples. The forward transform of this

function produces the spectral filter function desired

having M/2 single-sided complex coefficients. Input

data in blocks of M samples (or N samples plus k zeroes

for the overlap-add version) are then forward transformed

to produce'M/2 spectral values. After multiplication

of the input spectra block by the augmented filter

weighting function and inverse transforming, K samples

of the output are free of circular convolution error.

The price to be paid, however, is increased memory

size by K words, and a required overlapping of the input

blocks by N samples.

The complete process is illustrated in Figure 2.2

for the overlap-save method. Note in 2.2b that to

specify N parameters for the spectral detail (N/2

complex coefficients) a block size M - N + K must be

used in performing the transforms. For computational
V

efficiency, it would intuitively seem from 2.2a that

K should be considerably larger than N. However,

memory requirements are directly increased by increasing

K, and from the memory standpoint K should be made as

small as possible. In addition, the computational

gains are almost non-existent for K much greater

N, (due to the log factor in the (.log M) FFTthanN.(detthlofatrith 2lgM F

load formula) and actually become losses for M more

than about 8N. Figure 2.3 illustrates the computational

10



NOLTR 74-215

M = N+K SAMPLES FOR FIRST TRANSFORM

KM N+K FOR SECONDTRANSFORMETC

2.2a INPUT WAVEFORM BLOCKING, N SAMPLE OVERLAP

k IDFT D F T

N/2 ' H'(K)
COMPLEX h(n) K ZEROES ADDED W42 =(N + K) 12

NI REAL COMPLEX

2.2b DERIVATION OF REDUNDANT FILTER COEFFICIENTS

FILTER COEFFICIENTS
M/2 COMPLEX

FILTERED OUTPUT
F FFT x 1 F F T M REAL

INPUT INPUT FILTERED KVLDS~~E-4 K VALID SAMPlLES

BLOCKS SPECTRA SPECTRA N SAMPLES DISCARDED
M REAL K4/2 COMPLEX

2.2c OVERLAP-SAVE BLOCK DIAGRAM

FIG. 2.2 OVERLAP-SAVE FILTER ALGORITHM

11
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MRATI N 32 N =512

9-

a-8 8
7-

6-

5-

4- 4 4

3-

2-

1021

ARELATIVE MEMORY SIZEIoM

X RELATIVE COMPUTATIONAL LOAD

FIG. 2.3 COMPARISON OF MEMORY REQUIRED AND COMPUTATIONAL LOAD
VS M FOR OVERLAP-SAVE ALGORITHM
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load and memory-required as a function of M-for N a 32

and.N = 512. For each plot, "i" is the requirement

for the base transform (32,512). In both cases M i 2N

appears to be a good compromise between FFT load and

memory required.

Assume that the power spectral density (PSD) O(f') has

been specified at N-i equally spaced points covering

the band of interest W, i.e.,

2 N
(kf Yk ; k a - 7+ I, ... , 0, ... , N/2-1; 2.1

where N is Assumed even, YkZY*k are real and- positive, and

where fc' the resolution, is given by

fc = W/N 2.2

The Y are then the magnitudes of the amplitude response

at the frequencips

f5. kfc 2.3

The spectral response in the band of interest W

at frequencies lying between the fk is determined by

the particular synthesis algorithm employed to generate

the output time sequence Yn" For the overlap-save filter

algorithm described above, assume that the Yk are used

directly as the N-1 non-zero spectral coefficients of

13
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the filter function, i.e.,

Hk ' k = -N/2 + 1, ... , N/2 - 12.4*

where H- H k  Y since the Y are real. The correspond-

ing time sequence is given by

N/2-i N/2-.l
h n  k I H e - Yk e N n=0,...,N-I' -N/2 k k-N/2k

2.5

where Y-N/2 is assumed to be zero.

The filtering operation to be performed is then

the convolution of a function h(t) with the input function

x(t), with

x(t) x 6(t - mT S ) 2.6

where the xm are'the white Gaussian noise samples, and

where

W2-1
h(t) I h 6(t - nTs ) 2.7

n=-N/2 n

and Ts s is the basic sample period of the system.
c

To determine the spectrum of h(t), consider a function

h p(t) which is periodic with period NTs = 1/fc and is

identically equal to h(t) over the interval E-NTs, S Ns.

A function which consists of a repeating or periodic

sequence of impulses has a spectrum that is also a

14
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periodic sequence of impulses, where the impulse spacing

in each domain is Just the reciprocal of the repeat

interval in the other domain. The impulse values over

one repeat Interval in each of the two domains are

related by-the Discrete Fourier Transform (DFT)

modified by a scaling factor of T. Since by definition

the hn are the inverse DFT of the Hks the spectrum of

h p(t) is given by

N/2-1 1
(f)" - -I I W Hk 6(f- (k+mN)fc) 2.8

-m n-- k*-N/2 3

Thus the spectrum of h pt) is sampled and periodic with
p

the Y k being proportional by 1/NTs to the sample

values over one Period Nfce But h(t) is Just h p(t)

multiplied by a unit pulse of width NT

Therefore the spectrum of h(t) is Hp(f) convolved with

1 sine f/fce or

1 N12-1 1 H1 sincE( f - (k+mN)f,)/fH(f)u= k m cc
0 mu-40 k -N/2 aT ksnE( -(m~ /

2.9

Interchanging sums and rewriting slightly,

NT3) Hf~ 1k sine --k mNj 2.10
s k--N/2 m c

or, using B19,

15
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Nf2-1 fksnN

H(f) H k-i -- k) 2.11

Since the input x(t) is assumed to be white,

its PSD tX(f) is just some constant which can set to

unity for convenience. The PSD of the signal yX t

at the output of the filter is then

*x f) xf) IH(f)l2  2.12

or

I N/2-1 f 2
* M ~ Hk  sindN(f k) 2.13

¢ ku-N/2 c

Over the positive spectrum from 0 to B Hertz, Hk is

Just equal to Yk and the spectrum of the output over

the band of interest is given by 2.13. Thus the expected

value of the spectral magnitude of the signal generated

by the above convolution filtering algorithm passes

through the values Yk at the frequencies kfc, k a -N/2,

... , N/2 - i since sindN(u) a 0 for non-zero integral

values of u < N and exhibits sampling function

interpolation at points between the kfc . Note, however,

that the interpolation includes contributions from the

replicas of the Hk outside the band of interest, and thus

results in the interpolation form sindN(U).

16
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C. Concatenated Segment Algorithm

It would seem that, since the transform of a WON

time function is a WGN spectrum (reals and imaginarys

in the spectrum are all independent Gaussian random

variables), it would be possible to eliminate the input

forward transform and to generate the WON spectrum

directly. The problem is that, although within each

block the N random variables are independent and

Gausaiia in both domains, there is a required correlation

between blocks due to the N overlapped samples.

It would be necessary to generate the spectral random

variables such that the last N samples of the transform

f of one are identical to the first N samples of the transform

4 of the next. It is not immediately obvious how to

generate spectra with the required constraint, since

the time domain is the "natural" domain for specifying

the phenomena destred.

If circular convolution is completely ignored, the

computational load can be reduced from one forward plus

one inverse transform per output block multiplied by

some factor for overlap, to just an inverse transform

with no overlap. Assuming an overlap of two for the

fast convolution algorithm, this corresponds to a

potential reduction factor of four in computational

loading. It is thus tempting to try to obtain satis-

factory results by implementing the following signal

generation algorithm.

17
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Let Hk, k 0, 1, ... , N/2 - 1 be the single-sided

spectral coefficients of a discrete filter weighting

function. Let a WGN spectrum be generated with N/2

complex single-sided frequency coefficients, Xks where

the probability density of both the real part Xr and.k

the imaginary part Xk of Xk is given by

P (X) p i(X) e e X

-k rk 1 2.14

i.e., a zero-mean Gaussian process of variance a2 =

The N random variables Xr, x; k = 0, 1 ... N/2, are.k' k k =0,I•./2ar

all independent. The magnitudes of the X are then

Rayleigh distributed

PIXk (r) = 2re-r2; r > 0 2.15

with mean r = /T/2 and mean square r= 1

The phase angles of Xk are uniformly distributed

over 2 radians:

P 0 < e < 2w 2.16

The signal generation algorithm consists of first

forming the single-sided spectrum

k Hkk; k * 0, ... N/2 - 1. 2.17

18
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Then an inverse Discrete Fourier Transform (IDFT) is

performed onthe Yk to produce the real time series yn;

n a 0, ... N - 1. The y become the sample values of the

output broadband process yx(t) for an interval NT., where

T is the basic system sample period as before. The

algorithm is repeated indefinitely with a new, lindependent

-set of X 's on each iteration. The tth iteration generates,ftk

the tth set of X's, Xkts from which the samples of yX(t)

for the interval (t-1/2)NTs t < (t+I/2)NT -are obtained.

Thus:
whe-1 r -. [tN+n]T )  2.18

" £ --n=7N/2

where yn is the value of yn generated on the t h iteration.

Each segment of the output function generated in a-

single iteration can be thought of asexactly one period

of a periodic, sampled function yp(t), with sample period

Ts and fundamental period NTs . The spectrum of such a

function is also a sampled, periodic function Yp(f),

with period fs = 1/Ts and sample period f0 = I/NTso

Since ypt(t) and Y p(f) are related over one period of

each by the Discrete Fourier Transform, Ypt(mfc) is Just

equal to Y, " for m = k + rN; m and r integers.

Thus

* N/2-1

r=-w k=-N/2 N k (f - Ek + rNf c )

2.19

with YkZ being the Yk generated on the th iteration.

19
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The power ,density spectrum * (f) of the function"Ypt

Yp t) is Just*

N/2-1 - 2
!Yp ) = 2 kt a (f-[k+rN]fc) 2.20

pt(NT) k=N/2 rn-- C

The autocorrelation of the final output yX(t) can be found

by averaging over time the statistical autocorrelation

function y (t,,). The latter is just the autocorrelation

function of the member functions ypt if t + T is still

in the same segment as t and zero otherwise. yp (r)

is obtained by first taking IVhe ensemble average of

yp ,and then performing the Fourier transform.

Applying the expectation operator to 2.20, only the

Y are affected and

1f N/2-1 2 -

( ( N)f)=/ r=-Y 6k(f-[k+rN]fc) 2.21
YpL (NT5) k=-N12k

since

'C ~.2
E(IYkL 2 ) = 2 2.22

*The interested reader can readily convince himself
of the validity of 2.20 by considering the Power
Spectrum represented by 2.19 and noting the independence
of the YkZ for all k and t.
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by definition. The time average of Y (tT) is then Just

(yp (r) multiplied by the percentage of all possible

times t that a delay of T still remains in the same

segment. The multiplying function is thus triangular

with a value of unity at the origin (average power

in yX(t) is same as-average power in member functions)

and decreases linearly to zero at + the segment length

NT. Thus
s

*y (T)El-W-]; 0 < < NT s

(T) 0 I INT 2.23

ypT()[l+ -; -NTs < T < 0

The output power-density spectrum is then the

convolution of 0 (f) with the transform of the
Ypt

triangular pulse. The latter is

P(f) = sn2 ' 2.24

fe c

Convolving with 2.21, the PSD of the output is

(NT )2 1/2-1 2)x I) -  Y2 sinc2 -k-rN)
(NT 2 k=-N/2 k r = - o i Cf

2.25

21



NOLTR 74-215

or, using B24

SN '2-I 2

(yxf ) = N-/ Yk2 sind2( f - k) 2,.26
yk=-N/2 Fc

Comparing 2.26 with 2.13, the PSD differ in that the

PSD of the convolution filter algorithm is of the form

"square of sum", whereas the segment function algorithm

yields the form "sum of squares". Since the sind

functions have zeroes at all the cell frequencies except

the source of each, both algorithms yield a PSD that

passes through the points IHk12 at frequencies kfc .

The difference exists only for those frequencies

J lying between the kfc. The contributions to these

frequencies are due to a continuous impulse response

function for the convolution filter. This response

function is a sum of sind functions, but each is excited

by the same random process, and therefore-the appearance

of the "coherent sum" form. On the other hand, however,

each segment output for the second approach is obtained

by summing a set of independent narrowband processes,

each with a spectrum of the form sind N (x) and as is

expected these contributions add incoherently to form

the final output. However, since the stated requirement

was to produce broadband noise with a PSD that is well-

* behaved and continuous, and that passes through the points

IHk12 at frequencies kfc, both algorithms appear to
Ik

qualify. Thus If the PSD is the sole criterion to be
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satisfied, a considerable savings in computational

load can be realized by implementing the simpler

algorithm.

However, all is not well with the ttshort-cut"

approach. Each segment of' the output function is

actually one period of a periodic waveform, and as

such is continuous from one cycle to the next, or

equivalently, from the end to the beginning. The next

segment generated in this manner is completely

independent of the first, and the value of the function

and its derivatives at the end points will have no

relationship to the coresponding values at the ends

of the adjacent segments. Thus the penalty for ignoring

the circular convolution problem is a discontinuity

in the function and its derivatives every N output

samples. It is interesting to note that the first

order density function of the output yX(t)

(evaluated at the sample points) is independent of

position, i.e.,

2

p xCy(nTs)] = Py e 2.27

where the "approximately equal" becomes an equality if

the Ykt reals and imaginarys are truly Gaussian.

However, although the power spectrum of the generated
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signal is also as desired, the fact that the time

function is composed of statistically independent

segments is apparent in the second order density

function. Although the temporal autocorrelation

function of the output

R(r) f yx(t) yxc(t+,)dt 2.28

(the transform of the PSD) has no indication of the

anomaly, the ensemble correlation function

4(t,) E{yx(t)yx(t+[)) 2.29

is not independent of t and therefore is not equal to

R(T). Thus the output process is non-ergodic. The

practical implications depend on the application,

but in general the simple algorithm would not likely

be satisfactory if the output is to be fed into a

phase or transient sensitive processing system (such as

the human ear).

D. Overlapped Segment Algorithm

For applications in which the discontinuities in

the output signal are unacceptable, various compromise

algorithms are possible which require overlapping

output segments and therefore increased computational
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load, but which at least result in continuity of the

function.. Consider again the overlap-add version of

the convolution filter algorithm (see reference (1),

p. 210) with an overlap of two, i.e., M - 2N. The

filter impulse response and N points of the input

waveform are both augmented by K=N zeroes. The spectra

of the augmented functions have N complex coefficients

over the same band that the unaugmented functions

have N/2; the additional N/2 coefficients representing

spectral points halfway between the original points.

The new points represent interpolated values based

i on the sindN(x) weighting intrinsic to the discrete

AFourier transform. Note that this implies that each

interpolated value is obtained from a weighted average

of all N/2 of the original spectral coefficients.

It is obvious that performing this interpolation

algorithm in the frequency domain would require

considerably more computation than the FFT of the

original input time function. (The filter response

only needs to be transformed once at setup, so it

is not a problem). However, it is possible to apply

other less sophisticated interpolation algorithms,

which in general result in an approximation to augmenting

the input with N zeroes. Thus some improvement over

the concatenated segment algorithm might be had by

overlapping and combining segments that are derived by

a simple interpolation scheme.

25



NOLTR 74-215

The above considerations suggest an algorithm

based on an overlap-add scheme, but where the segments

overlapped are still independent. 1.:t segments of

length N be generated as in the previous algorithm,

but then be windowed or modulated and overlapped

before combining. To prevent the output signal from

exhibiting modulation related to the segment period,

the modulated last half of segment t must add to the

modulated first half of segment t + 1 to yield first

order statistics that are independent of position.

Since the random process for each segment is independent

of all other segments, the overlapping halves add

incoherently. Thus an appropriate modulating

function is a sine or cosine half cycle pulse that

has zeroes at each end of the segment and is unity

at the center. The interpolation algorithm that

produces a segment modulated by such a sine pulse is

easily derived.

Let yp (t) be the sampled, periodic segment function

derivable from the YkZ's by the Discrete Fourier Transform.

It is required that the spectrum of Ypt(t) be generated;

where

) = Cos M) P 2.30
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and where Tsl the basic sample rate as before.

Multiplication of the time functions corresponds to

convolution of the transforms. The Fourier Transform

of cos is, just
5

M (f) 1 6(f + 4'('f 2.31
S

i.e., impulses at +l/2NT s. The cell spacing is 1/NTs,

so M(f) consists of impulses at 1 times the cell

spacing. Obviously since the function Y W(f) (spectrum

of ypt(t))' is to be non-zero for only multiples of

fc = i/NTi,, direct application of 2.31 is not useful.

However, by applying a little sleight-of-hand, it is
/

possible to obtain the spectrum of a signal that is
A

functionally equivalent to ypz(t) and that has

components only at f = kfc for integer k. The trick

is to redefine the Hk'S as the spectral magnitudes

at frequencies f = (k + Convolution of each

of the spectra Yt(f) generated from the new Hk's

with M(f) yields the desired spectrum YpZ(f), where

each component YpL(kfc) is the average of the two

adjacent components of Y (f), k and
:t -k and kl

The transform of Ypt(f) then produces the function
A

ypt(t), of which one NT, - second segment between
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zeroes of the sinusoidal envelope is added to the output

Yx(t) being generated. The fact that the phases of the

components of Y (f) are uniformly., distributed over 2:

radians permits taking the NT -second segment of y t(t)
frm-rto with no loss~ igenerality. To fn h

PSD of the output generated by the latter methods let

Y t(f) be written
a N12-l1  *

!P~ I I f- Yk 6(f-(rN+k+l.)f,) 2.32
r=-ft k=N/2 s

where the Yk are generated from the redefined HkIs as in

2.17. -Convolving with M(f)

A1 N12-1 (~rNklf.
Y t~f)It 2N 1 1 Ykt{6(f-(rN+k)f,+8f(Nkl,,

p s r=-oo k=-N/2

2.33

Isolating a segment of length NT 3 results again in

convolving with 1sinc f/fe, yielding'

A - N12-1
Y (~f) 1 Y. ( ksine f/fC-rN-k) +sinc (f/fd-rN-k-l) I

r= kl--N/2

2.34

or

{sine (f/f.-rN-k) ie(/dr--)

2.35
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The Energy Spectral Denmsity of i(f s then

*0 Mr * 1Y 1() YIf 2'0.36

N/2-1 N/2-1 f E -N-k)

f IrN-k-l)" [sin ( f -aN-J)+sin(-- -N-J-)]

9 ~m-ftc

2.37

Again, Ykt is independent of Y,, unless k-J, and then.jc L ]
2

21 H2  ff 2M N n- ( rrf -rN-k)+sinc( f -rN-k-l)))
Yk-N/2 2 (r -  sinC(Tc (c

2.38

Finally, the PSD of y X(t) is again Just twice the average

over t of 2.38 (factor of two due to overlap), or

Sf) 2" (f) 2.39
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The form of 2,38 is the same as 2.10 and 2.25 except

that the interpolating function is the sum of 'two

sinc(x) functions displaced by unit separation.

Writing the sum out,

sinc x + sinc(x + 1) +sin +x sin(ux )wx Ix + I

'sin wx 1'%x 2.40

Note that the result has the same oscillatory behavior

as sinc x, but falls off as x2 rather than x. This is

especially beneficial wheA it is desired to produce

an output yX(t) whose spectrum has abrupt changes in

level as a function of frequency.

Summarizing, the straightforward application of

standard convolution filter techniques to the synthesis

of a random process with specified PSD requires on

the order of a factor of four more computational load than

a minimum implementation ignoring circular convolution.

Although the PSD at the specified points and the first

order time statistics are the same, the minimum implementa-

tion output iL discontinuous and may be unsatisfactory

for transient-sensitive systems. A compromise solution

requiring a factor of two overlap and therefore a factor

of two more computational load is somewhat more satisfactory

in that the output is continuous, but the derivatives
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at the segment ends are still discontinuous. However,

it will be shown in Chapter 3 that the factor of two

overlap is very desirable when discrete or line

components are to be added to the generated signal.

3
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CHAPTER III

IFFT GENERATION OF DISCRETE FREQUENCIES

A. The Exact Synthesis Algorithm

In an analog system, the generation of a sinusoidal

waveform is usually implemented by constructing an

oscillator having the desired frequency .

The direct adaptation of this approach to discrete

or line frequency generation by a digital system requires

a second order difference equation with a pole

at the desired frequency. As a general digital synthesis

technique, this approach has problems with stability

due to a coefficient quantization, as well as the

disadvantage that each frequency requires a separate

generator. On the other hand samples of the desired

sinusoid are generated one at a time, and thus for a

small number of discrete frequencies desired, the

meager storage requirements are attractive relative to

block processing techniques. However, for the case

where the sum of many discretes is desired, significant

computational savings can be obtained by utilizing

block processing with the Fast Fourier Transform (FFT).

Implementation of a general second-order difference

equation requires about the same amount of computation

as an FFT butterfly. Generation of N samples of a
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single sinusoid by difference equation requires N

such computations, whereas generation of N samples

by IFFT requires 1og2N computations for the

transform plus whatever computation is required to

specify the desired sinusoid in the DFT domain.

Thus, for N on the order of 1000, generation of the

sum of more,than 5 discretes begins to favor the

FFT approach unless an unreasonable amount of

computation is required to specify the lines in the

sampled frequency space input to the IFFT.

For generation of discretes with frequencies that

are exactly equal to the cell frequencies fc = f /No

where f. is the sampling frequency, the specilfication

in the sampled frequency dontain is trivial. Consider

the IFFT of N/2 single-sided complex frequency coefficients

Fk, k=0,1,...N/2-1, to produce N time'samr;les f n

n=0,...N-l. A non-zero Fk, say Fkl, will result in a
contribution to the output time segment of exactly k1

cycles of a sinusoid (period = N/k1 sample periods),

with a magnitude and a phase relative to the beginning

of the segment determined by the complex coefficient

F Since successive segments generated with the same

Fk till match perfectly at the segment boundaries,

the result will be a perfect sinusoid (sampled, of
% k1

course, with frequency -fss Thus for independent

discretes with frequencies in multiples of fs/N, a

single complex number added to the appropriate
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spectral cell before each inverse transform will

result in the desired sinusoid added to the output

time waveform.

For frequencies that are not exact multiples of

f/N, the situation is c.onsiderably less straight-

forward. Since the discrete Fourier Transform (DFT)

is information lossless and reversible, the easiest

way to see what is required to generate arbitrary

frequency sinusoids is to consider the forward

transform of successive segments of the desired

waveform. First consider the (complex to complex) DFT

of an arbitrary complex exponential w(t ) given by:

J (2wf ft + )
w(t) = e a 3.1

where fa is between 0 and f,/2, and a is the phase at the

beginning of the segment of length NTs'from which N

samples have been taken. Let fa be expressed as

fa - (m + d)N 3.2

f
where is the cell spacing, and m is an integer and

fs
d less then unity. m-N is then the next lowest cell

frequency, and d is the fraction of a cell spacingfs

that fa is above m- . The sampled version of w(t)

is then

wx(t) = eJ aeJ21r(m+d).. - nTs 6(t-nTs )  3.3
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and the samples of the segment of interest are

21
(y(;n+d)n+a )

w(n) = e , n=O, 1 ... N-i 3.4

where the fact that fsTs = 1 has been noted. The DFT

is then

W(k) = e e 3'.5
n=O

Removing the phase angle from the sum and combining

the exponential arguments

eJ N-I -J (k-m-d)W (k) e = 3.6

From Appendix A,

N-1 j2iniW N-1 )U

e Ne sindN(U) 3.7
n=0

and

* -I2T(N-1 (k-m-d)
W(k) eJ e N sindN(k-m-d) 3.8

If d=0, only W(m) e3  is non-zero as was noted above.

However, for any non-zero d, 0 < d < 1, all W(k) are

non-zero. The magnitude of the W(k) are governed by
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the sind(k-m-d) form, and the phases are governed

by e+j (a - " i '(N (k-m-d')) where a is the desired phase

angle at the beginning of the segment.

For a real tim/function

functio

w(t ) e3 (2 " ' t + ) + e-J( ,' a t + ) 3 9

By Iineari y of the DFT, the corresponding sampled

spectra of a sampled segment is given by the. sum of/

two terms at +fa

SeJa -Jlj(k-m-d)
W(k) = -F e sindN(k-m-d)

- j e "(k+ +d) sindN(k+m+d) 3.10
N e

To avoid unnecessary complication in the math, the

following arguments will be in terms of generating a

single complex exponential. The corresponding real

sinusoid is easily obtained by summing a pair of
conjugately symmetric exponentials at +fa' the

desired frequency.

The required synthesis algorithm is thus to add

contributions to every spectral cell (for each discrete

frequency desired) according to 3.8 (or 3.10). Since

there will be exactly m+d cycles of the required

sinusoid in each N sample segment, the phase angle
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must be increased by 2wd radians for the generation

of successive segments to maintain continuity from

one segment to the next.

B. An M Cell Approximation

The computation of the W(k) for N/2 spectral cells

to generate N output samples obviously requires more

computational effort than direct generation of the

sinusoid in the time domain, even before considering

the overhead of computing the inverse DFT. Thus the

exact solution using FFT techniques is not practical

unless the required frequencies can be constrained

to the set fa nfc, n=O, ±1, , +N/2-1.

If, on the other hand, bomething less than perfec-

tion is acceptable, an approximate solution may yield

the hoped for computational savings. -Since most of

the power in the spectral domain is contained in cells

near the desired frequency, it would seem reasonable
I

to approximate the complete spectral description by

truncating the tails of the sindN(x) envelope or by

some other equivalent operation. This could result in

an acceptable number of coefficients to be specified

for each segment of each discrete required in the

output. If a 1024 complex to 2048 real IFFT is being

utilized and if only ten non-zero coefficients per

discrete will produce acceptable output results, the

37



NOLTR 74-215

generation of 10 complex coefficients in the spectral

domain becomes quite attractive relative to having to

generate .2048 numbers in. the time domain for each

sinusoid desired.

Assume that only the M largest (in magnitude)

contributions per complex exponential are to be

retained unmodified in the sampled frequency-domain.

Since the contributions of all other cells are to be

eliminated, the total power is decreased by-the sum

of the squared magnitudes of the eliminated spectral

components. In fact, due to the orthogonality of

the Fourier frequencies, the M largest components

form a least mean squared error estimate of the original

signal if only M cells may be non-zero. Thus if mean

squared error is an acceptable criteria, adding the M

largest contributions based on either'3.8 (for single

sided spectra) or 3.10 '(for double sided spectra)

yields the optimum approximation.

Since the sindN(x) envelope of the spectral

magnitudes decreases monotonically on either side

of the desired frequency, zeroing all but the M

largest components is equivalent to multiplying the

spectrum by a pulse or "window" of unit magnitude

and width M-- . Multiplication in the frequencyN

domain is equivalent to convolving the time function

(sinusoidal segment) with the transform of the window.
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The resulting time function segment can be determined

by an inverse DFT of the windowed spectrum

s(n) w(k) e 3.11

k=m-Il

Using 3.6,

M~sen) = 2' eja -J e -kmd e J-W
Mt=1 0

3.12

Interchanging the order of summation and refactoring the

exponentials,

2wt M 2irk
s(n) = e 1 1  J -(m+d) m+7 JNej M

, k=m-..

3.13

Factoring an e from the last summation and

modifying the summation limits correspondingly,

1-I1 e CJ(m+d) e-mcn_) - )

s(n) =eja t= N e ku-M e

3.14
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Factoring the original sinusoid from the summations, and

reordering again,

'2in *M 2nkd N- 2 -)
e3 j F-m+d) *f 7eis(n) - • e t em~

3.15

The last sum is Just the sindN(k-d), so
M

s(n) -eJGeJ (m+d) 2V e'J'~2 (k-d) -J(N-l) (k-d)

k=-el

sindN(k-d). 3.16

or, Ifinally, the desired form,

Ms~n)='e N e (m+ d )  2 JZ-(k-d)(2n-N+l)
s~)=eaei e Nsind N(k-d ) .

3.17

This is Just the desired sinusoidal segment, but modulated

by a gain factor which is dependent on both n and d.

An example is helpful in ill:5strating the result

of the uniform window approximation. Figure 3.1 shows

a 128 sample function segment which covers 10.25 cycles

of a sinusoid, Figure 3.2 is the correspondig 64 point

single sided spectra derived by DFT. Note the 1800
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FIG. 3.1 SAMPLED SINUSOID SEGMENT -10.25 CYCLES, 128 SAMPLES

0db

Arg [S (kc)] 0

k

FIG. 3.2 LOG MAGNITUDE-PHASE SPECTRUM OF 10.25 CYCLE SEGNANT.
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phase difference for components just above and just

below the actual frequency. A uniform window of width

M-10 is applied to produce the approximation spectra

in Figure 3.3. An inverse DFT then gives the approximation

time segment shown in Figure 3.4.

Crudely speaking, the major effect of truncating

the tails of the segment spectrum is to attempt to

"match up" the two ends of the segment. This is to

be expected since the "end-around" discontinuity, or

equivalently, the discontinuity from one "cycle" to

the next of the periodic waveform represented, cannot

be sustained without the frequency components contained

in the tails of the spectrum. The error for the example

given is shown in Figure 3.5, and is representative

of the relative size of the error at the ends of a

segment versus the center portion. -

A composite time segment was constructed by concatenating

four segment approximations derived as in the example

above, but with initial phases of 0, v/2, w, and 3w/2

radians, respectively. The resultant time block contains

512 samples covering a total of 41 cycles of the desired

sinusoid, and is shown in Figure 3.6. Note the rather

severe effective modulation of the signal envelope in the

vicinities of the segment boundaries. The error function

for the composite waveform is shown in Figure 3.7, and

has a maximum value of .55 relative to a perfect (all
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k

FIG. 3.3 TRUNCATED SPECTRUM OF APPROXIMATION SEGMENT

s'(n) 0

n

FIG. 3.4 APPROXIMATION SEGMENT WAVEFORM
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n

FIG. 3.5 SEGMENT ERROR s'(r,) - A~n).

s'(n) 0

FIG. 3.6 ( MPOSITE 512 SAMPLE APPROXIMATION WAVEFOM.
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spectral components preserved) waveform amplitude of +1.

The maximum excursion of the approximation waveform has

a relative amplitude of 1.09.

The spectrum of the composite approximation wave-

form is shown in Figure 3.8. The largestoundesired

component is about 24 db below the desired signal

strength. Note that the major error components are

at frequencies fa + n/NTs, where fa is the desired

frequency and NTs is the length of each approximation

segment. This is the behavior expected in the frequency

domain corresponding to the effect described above of

the time waveform being effectively modulated on a

once per segment rate.

If the criterion of acceptability is other than

minimum mean square error, such as ratio of desired

signal to largest undesired component or minimum

amplitude modulation of the time function, the uniform

window may not be the best solution. Shading of the

window coefficients was briefly pursued, but in

general decreased side lobe strengths were obtainable

only at the expense of increases in amplitude

modulation in the time function. In addition, the

fact that the spectral truncation operation reduces

the "end-around" discontinuity for each segment means

that discontinuities are created in the composite output

waveform at the segment boundaries. Although increased

fidelity can be achieved by using a wider window, any

computational advantages of the technique are soon lost.
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It appears, then, that this particular FFT based algorithm

is not very useful unless a rather coarse approximation

is acceptable, preferably with only a mean square error

fidelity requirement.

C. The "Overlapped-Hanned" Algorithm

The fact that the major difficulty encountered in

the above algorithm was an effective modulation of each

segment suggests the possibility of purposely introducing

a specific modulation characteristic and to compensate

by overlapping and summing adjacent segments; i.e.,

introduce redundant processing. This is all the more

attractive if the desired discrete components are to

be combined with a specified broadband signal, since it

was shown in Chapter 2 that a two-times redundancy factor

yielded a fairly satisfactory broadband algorithm. If

the same factor of 2 can be exploited for the discrete

case, the approximation coefficients can be added to

the broadband spectra before transforming, and thus one

IFFT does all.

Since the contributions in each of the overlapped

segments add coherently to form the total signal

for the discrete case, the sine pulse weighting used

for the broadband algorithm is not applicable. A

triangular pulse modulatioii form meets the requirement

in the time domain, but is not obtainable by simple
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manipulation of the spectrum of the signal. On

the other hand, the raised cosine modulation (corresponding

to "Hanning" shading) of the segment appears to be an

almost perfect solution to the problem. Overlapped

signal segments that have been modulated by the Hanning

pulse PH(t)

.5 + .5 cos 2t/NT5; Iti < NTs/2

H (t)= 3.18

0; It I NT /2

will add perfectly to produce the original waveform.

The question thus becomes: can the Hanned segment be

more easily approximated than the unmodulated segments?

Returning to the spectrum of the unweighted segment,

Equation 3.8, the spectrum of the Hanned segment WH(k)
is obtained by convolving with the transform of

F1 + cos 2w n/N). The latter is the well known

PH(k) 6(k+l) + . 6(k) + - 6(k-l) 3.19

i.e., impulses at zero frequency and at + one
fs

frequency cell L•

Convolving 3.8 with 3.19 the result is
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Se- O sind(k-m-d)

+ -T eJ ( )kmlsindN (k+l-m-d)+7r eJr( )-m1

Isind N (k-l-m-d 3.20

Manipulating and writing out the sind functions,

WH~~k) N- e J( )d -Jlr( N)(k-m)sn(kmd

W~(k)=7 e e 3T~) i[inlrckirmd)

I.
I Ja *-) sin[w(k-m-d)+.] + Ni

+ e e+

sin[ns(,wm-d - m-

s in'1 (k-m-d)-l) 3.21

sinlj(k-m-d-l) J

In the last two terms, sin[fr(k-m-d)+r] is Just

-sin[w(k-m-d)], which can then be factored out of

the brackets. Since the approximation is concerned

with the WH(k) for k near m, sin f(k-mdl is

approximately equal to (k-m-dtl) for reasonably largeN

N, say on the order of .03. Similarly the factor

(N appearing in the exponentials is approximately

unity for N large. Thus, for k in the vicinity of m,
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N 1 eja e Jid eJ(k-m)WH(k) (e -

1 + i+ 2(k-m-d+l) Zk-m-dl) 3.22

Factoring a from inside the brackets and combining,
Hactr)k-m-d)'

1 ~~d. (k-m) sinw (k-m-d) (2(k-m-all2-1_WH (k) 2. e eJaw (-l) 1 (--)' (~~ )

3.23

The magnitudes for the frequency contributions around k = m

are given by the factor in brackets. The phases are determined

by a + 7rd, plus some number of 7r rotations determined by

k - m in the last exponential, and the sign of the factor

in brackets. In the example given below, it is shown

that these factors of (_1 )n are responsible for three

consecutive phase shifts of w radians each in the vicinity

of k = m.

The approximate WH (k) given by 3.23 to be generated

for the synthesis algorithm has the following exploitable

characteristic. As was noted before, only the phase a

changes for any of the WH(k) from one segment to the next.

Furthermore, the only phases required are either a + ird or

a + wd + w. Thus, if M magnitudes are computed and stored

for an M cell approximation, only one cosine and one sine

are needed to determine the real and imaginary parts to
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be added to the synthesized spectrum for each segment.

Note that unless a particular phase is required, the initial

phase (c+wd) for the first segment can be arbitrary, and

all that is required thereafter is to increase the a+wd

term by wd on each iteration.

Since the primary virture of Hanning weighting is to

greatly reduce the sidelobes of the sinc(x) DFT filter

function, it provides almost the same reduction in the tails

of the sindN(x) form of 3.8. The result is that, although

as before perfect synthesis requires contributions in all

frequency cells, the Hanning modulated discrete segment

aphieves a very close approximation with many fewer non-zero

components.

The basic parameters of the previous example were

repeated in the example below illustrating the application

of the "overlap-Hanned" algorithm. A set of time function

segments, each consisting of 10.25 cycles in 128 points,

with phases incremented by 2w/ 8 rad. for each successive

segment. are forward transformed, Hanned, tails truncated,

inverse transformed and combined to form a composite output

time function of 41 cycles in 512 points as before. Figure

3.9 shows the same 10.25 cycle segment as shown in 3.1, but

after modulation by the raised cosine pulse, of "Hanning".

The corresponding spectrum is shown in Figure 3.10. Note

that the tails of the spectrum have been reduced considerably,

such that barely four components on each side of the actual

51



NOLTZR 74.-215

s(n) 0

FIG. 3.9 HANNED SINUSOID SEGMENT - 10.25 CYCLES, 128 SAMPLES.

0db

UV S (k)~ -24db J I
-48ci -_ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _

Arg [S (k)] 0 - uppIippIhIIBIIIIhIupIIs..

k

FIG. 3.10 SPECTRUM OF HANNED 10.25 CYCLE SEGMENT.
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frequency are within the 48 db range plotted. Note in

addition that the phase undergoes three shifts of i

radians each in the immediate vicinity of the desired

frequency, compared to the single % radian shift

(Figure 3.2) for the unHanned segment.

The tails of the spectrum of each Hanned segment are

then truncated to produce the spectrum of the approximation

-as before. For this example, only the six largest components

in Figure 3.9 are retained, which corresponds to throwing

away all contributions that are more than about 40 db

below the largest one. It is interesting to note that,

in Figure 3.2, no components in the unHanned segment

are below the -40 db level. Finally Figure 3.11 shows

the composite 512 sample approximation waveform obtained by

the overlap-Hanned algorithm. The error is plotted in

Figure 3.12. The approximation spectrum, shown in

Figure 3.13 has no sidelobe components larger than 50 db

below the desired component. Figure 3.14 is the spectrum

of the error alone, which consists primarily of components

displaced by multiples of 2/NTs, or the reciprocal of half

the segment length. The doubling of the effective modula-

tion rate relative to the first algorithm is due to the

factor of 2 overlap, since the modulation of each segment

is definitely still characterized by the period NTs.

The "overlap-Hanned" synthesis algorithm for discrete

components yields very high fidelity with a very small-
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0

FIG. 3.11 COMPOSITE APPROXIMATION FROM 8 HANNED SEGMENTS.

0.0156

Error 0

-0.015% L

n

FIG. 3.12 ERROR s'(n)-s(n) FOR OVERLAP-HANNED APPROXIMATION.
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0&

I ~W9S LIS )I 24& _ _ _

FIG. 3.13 SPECTRUM OF OVERLAP-HANNED APPROXIMATION.

Lag ISO k) I -75d

Arg IS' (Ic) 0J

FIG. 3.14 SPECTRUM OF OVERLAP-HANNED APPROXIMATION - RESCALED.
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number of non-zero spectral contributions. In particular,

a six component approximation empirically appears to yield

a maximum error of slightly more than 1%, and maximum

spectral sidelobes of about -50 db. Even a 4 cell

approximation has less than 5% error, and about -35 db

max sidelobe levels.
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CHAPTER IV

TIME DOMAIN SYNTHESIS OF DISCRETE FREQUENCIES

A. Harmonic Sets

Quite often it is desirable to generate sets of

narrowband components which are harmonically related. That

is, all of the members of a particular set are Just the

spectral components Yk of a periodic or almost periodic

time waveform. Let the tinie function of a particular

harmonic set be denoted by y(t), defined by

- J2iikfot

y(t) Y k e 0 4.1

where fois the fundamental frequency of y(t). The

spectrum of y(t) is then

Y(f) k 6(f-kf o ) . 4.2

Although each of the components of Y(f) could be

generated explicitly by the techniques described in

Chapter 3, it becomes profitable to generate y(t)

directly in the time domain if the number of non-zero spectral

components Y(kf ) is fairly large.
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If identical copies of a waveform defined over an

interval TO are concatenated in time, the result is a

periodic signal with fundamental frequency l/To.

Thus if a lossless delay line of length T0 containing

one period of a desired waveform were recirculated a.

illustrated in Figure 4.1 the signal observable at any

tap would be the periodic signal desired, with fundamental

frequency fo = l/To" If the waveform contained in the

delay line is exactly one full cycle of a sinusoid, the

spectrum of the signal generated will be non-zero only

at the fundamental frequency +fo. However, if an

arbitrary waveform is contained in the delay line, then

in generaL the spectrum may contain any of the

frequencies harmonically related to fo, i.e., kfo for

all integer k. The spectral values at these harmonic

frequencies are Just the coefficients obtained by

expanding the To seconds of signal in the delay line

ina Fourier series.

The discrete equivalent cf the above operation is

obtained by loading a shift register with the samples of

one period of a waveform y(t), connecting the last stage

to the input for recirculation, and observing a discrete

periodic signal yX(t) at any stage in the shift register.

For an N stage register and a shift rate fr' the sampled

periodic signal produced has a fundamental frequency fo =

f IN. Since the resultant waveform is both sampled and
r

periodic, its spectrum yX(f) is also both sampled and
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LOSSLESS DELAY LINE (iX (t)

X(t)

CONTENTS OF LINE AT TIMEt
OR ONE PERIOD OF OUTPUT SIGNAL

FIG. 4.1 GENERATION OF PERIODIC SIGNAL BY RECIRCULATING DELAY LINE
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periodic, with a sample spacing of f and period

Nfo = fr. Since a shift register may be shifted

at a variety of rates, the fundamental frequency of the

signal generated by the discrete system may be easily

adjusted to any desired value by the appropriate

choice of shift rate fr Figure 4.2 illustrates the

output of a six state register for two different

shift rates, and the corresponding spectra for each.

If the shift register version described above is

applied to the generation of a periodic signcl. with an

arbitrary harmonic structure, care must be taken that the

shift register is sufficiently long to allow independent

definition of all desired harmonics. Since the discrete

spectrum yX(f) is periodic with period Nfo, it is

obvious that there are at most N different complex

harmonic amplitudes. However, since yX(t) is a real

time series, the spectral components exhibit conjugate

symmetry about f = 0; i.e., if

:27kt
yX(t) Y e = Real 4.3

then

Y • 4.4
Yk = -'k
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X1(t)

T I/ri

SHIFT RTE I 1 FIr Fly

f ~f /6 ~r
o0 ri

(2o)

TO rf2 >/ri
SHIFT RATE 2

f r2  F2(f)

-f
f<f 0r2 <rl

02 r2 ol

(2b)

FIG. 4.2 OUTPUT OF 6 STAGE SHIFT REGISTER FOR TWO DIFFERENT
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where * denotes the complex conjugate. Thus for a N

stage shift register, at most [(N-l)/2J harmonics plus

the d.c. component are independently specifiable, where [ )

denotes the integer part.

A further complication exists when the valid output

band may be significantly wider than the band cove-a d by

the desired harmonics of the generated signal.

Figure 4.3 illustrates a case where, if zero fil!Led

harmonics are not e~plicitly included in the waveform stored

in the shift register (corresponding to sampling at greater

than the Nyquist rate and therefore additional len-lh of the

shift register), undesired harmonics are created ii the

output band of interest for low shift rates (low fundamental

frequencies) due to the periodic nature of the generated

signal spectrum. In general, if the required valid output

bandwidth is B and the lowest fundamental frequency required

is fmin' the minimum number of harmonics that must be

specified is B/ffinI or equivalently, the minimum shift

register length is 2B/fmin . From Figure 4.3c it can be

seen that if the highest non-zero desired harmonic is m,

then the minimum value the shift rate can be is B + mfmin,

or the valid output band plus room for the image spectra at

the shift rate fr. The minimum length of the shift

register is then given by the next integer larger than

fr/fmin) i.e., Nmin = [fr/fminJ+l = [B/fminJ+m+l.

Thus, for all fundamental frequencies for which the
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II
F2(f) B

UNDESIRED
SPECTRA OF X2 (t) FROM FIG. 4.2 b SHOWING UNDESIRED
HARMONICS IN BAND OF INTEREST B

F(f) B

2.3 b DON'T CARE

DESIRED SPECTRA IN BAND OF INTEREST

F3 (f)

If2.c I t
fr3

PERIODIC SPECTRA VALID IN BAND OF INTEREST

SX3(t)

*1- ~ i il lil t Ililll
IT F I I 1 11111111 '

Tr3 = 1/fr3

CORRESPONDING SHIFT REGISTER OUTPUT REQUIRES
12 STAGE SHIFT REGISTER

FIG. 4.3 MINIMUM REGISTER LENGTH FOR GUARD BAND

63



NOLTR 74-215

desired waveform must be generated, the unwanted

harmonics are outside the band of interest and may be

removed by analog filtering after D/A conversion, or

Just ignored.

B. The "Slip-Sample" Algorithm

The above technique for generating periodic signals

with arbitrary harmonic structure and variable fundamental

frequency requires a dedicated recirculating shift

register and a controllable rate shift clock4 both of

which are special purpose hardware. The following

technique is an adaptation of the principle of the

above implementation, but is designed to be realized

as software in a general purpose computer.

Assume that the required number of discrete samples of

one period of the desired signal is stored in a block oc

random access computer memory. If the samples are

sequentially read from the block by the computer and

fed to the output D/A converters, the result is identical

to the shift register output described above (the computer

returns to the beginning of the block after each pass through

the block). The rate at which the samples are read and

output is determined by a clock interrupt or other

timing technique, and as before determines the fundamental

frequency of the output signal.
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In a more general case, however, the generation of

the periodic signal may be only a part of the overall

signal processing problem, and may be fed directly

to other parts of the sampled data system. In the

usual case the entire system will be operating at

one fixed sample rate f., and each part of the system

must accept and process dal:a at the rate f so This

rate is not in general related to the desired fundamental

frequency fo of the periodic signal to be generated.

One possible solution to this constrained problem

would be to adjust the size of the memory block to

be such that at the sample rate fs' once through the

block would be To = 1/f seconds, where fo is the

daisired fundamental. This has two rather severe

drawbacks. First, the realizable fundamental frequencies

are given by fs/n, where n is an integer. Thus, except

for extremely low fundamental frequencies (large n),

the realizable frequencies are few and far between.

In addition, even for very low fundamentals where

re-sonable frequency resolution is available., each

C e in fundamental frequency requires rederiving

the complete set of time samples stored in the

memory block.

A more viable solution to the fixed sample rate

problem is to maintain a fixed block size adequate

for the lowest desired fundamental frequency, and
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to vary the effective rate at which the computer

scans through the block. This variation in readout

rate is accomplished by maintaining and incrementing

the position in the memory block with a precision

much greater than one memory cell. Since it is not

really possible to read between memory cells or

desirable for computational loading considerations

to interpolate, the block pos~ition is rounded (or

truncated.) to the nearest integer memory location for

the actual data access. In simple terms, the net

effect is to "stretch" the stored waveform by

occasionally duplicating a value in the output (reading

a memory cell twice before going on) or to "shrink"

the waveform by occasionally skipping a cell in the

readout.

Consider a memory block of length N and block

position parameter P, as shown in Figure 4.4. Assume

that P is maintained to a sufficiently high resolution

as to be essentially continuous relative to the

quantization of the memory into N words. If the block

of memory contains one period of some waveform, then

P is in effect a phase angle of the fundamental of the

periodic waveform. For a non-integer P between the

4th and 5th samples as illustrated, the contents

of the fourth cell are used as the output for, say,

the ith sample. P is then incremented by an amount

F derived from the desired fundamental frequency,
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MEMORY CELL CORRESPONDING TO SAMPLE AT
TIME 4 ACCESSED FOR 4 P< 5

Nth MEMORY CELL

L..... II I I !LI I Ill
0 1 2 3 4 5 N-2 N-1 N

':t t t t t t t t t ,,t
P = 4.437 . . . (IN UNITS OF MEMORY LOCATIONS)

I (o = 27r. 4.437.... (AS A PHASE ANGLE IN RADIANS)
N

I I
I I

VALID RANGE OF P

FIG. 4.4 SCHEMA1IC REPRESENTATION OF CONTINUOUS POSITION IN MEMORY
BLOCK AS PHASE ANGLE
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and the appropriate memory cell is accessed for the

(i+l)st sample. F is specified with the same resolution

as P, and is therefore also not in general an integral

number of memory cells. After incrementing by F, P

is retained modulo N to maintain it within its valid

range. The fundamental frequency fo is then given

by the rate of passing completely through the block,

or

F4.f= fs45

It is important to note here that the memory

locations accessed twice (or skipped, as the case may

be) are in general different on each pass through the

block. In addition the number of "doubles" or "skips"

per pass may in general alternate between two values

such that the average number per pass is non-integral.

Thus this technique differs significantly from just

modifying the block by duplicating or dropping one

or more samples. It is also obvious that for frequencies

which require a non-integral number of "glitches" per

pass, the output signal is not; truly periodic, nor is

it even composed of samples of the desired periodic

signal. It is really only an approximation to the

sampled version of the desired signal and on the average

(in some sense) has the right behavior.
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The analysis of the sampled data signal generated

by this technique is aided by identifying the operations

performed as components of a more familiar system.

Let the desired periodic signal be y(t), with period

T and fundamental frequency fo = l/T Assume that
0 0 0

samples are taken from y(t) at a rate f which is

N times the fundamental. Thus there will be exactly

N samples in each period of the sampled signal yX(t).

The samples (or impulses) of yX(t) are now applied

to the input of a "boxcar-integrator" filter, i.e.,

a filter with an impulse response of a rectangular

pulse of unit amplitude and duration T0 centered at

t = 0. Let the filter output be designated Yb(t).

If Yb(t) is now resampled at a second rate fs, in

general not related to fs-' samples taken during any

interval (n-2)To < t < (n+ .)T will yield the value

of the sample taken from y(t) at t = nTo . This is

0

exactly analogous, to the situation where samples

taken from y(t) are stored in a computer memory, and

then accessed by rounding sample "times" to the

nearest memory address, assuming here that samples

are stored such that increasing time corresponds to

increasing addresses. (T:uncating instead of

rounding to form the address would introduce a delay

of half a memory cell, but would yield equivalent

overall results.) The output signal is therefore

69



NOLTR 74-215

the result of 1) multiplying the desired y(t) by an

impulse train of frequency f., 2) convolving the

result with the impulse response of the boxcar filter,

and 3) resampling its output by multiplying by the

impulse train of frequency fs. Correspondingly,

the spectrum of the output signal is obtained from the

spectrum of y(t) by 1) convolving with an impulse

train of spacing fs (which is some integral multiple

S1

of the fundamental frequency) as a result of the initial

1
sampling process, 2) multiplying by r- sinc(f/f sl),

the filter function of the boxcar integrator, and

3) convolving the result with a second impulse train

of spacing fs2
2

Since for the case of interest here the signal y(t)

is periodic, its spectrum Y(f) is impulsive with

spacing fo:

N12-1
Y(f) " k 6(f - kfo) 4.6

k=-N/2+1

where Y(f) has been explicitly band-limited in

anticipation of sampling at Nfo. Performing the

sampling operation, Y(f) must be duplicated every

f = Nfo,
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X N12-1IJY(f) Y~-f k d(f-fo tk+mNJ) 4.7
MU-l in---f k=--N/2+l

Multiplying by the filter function,

1* N12-1
~- sinc(f/Nf0) ~ ~ ~mJ k

0 m=- k=-N12+l

Convolving with the secondL impulse train for the final

step, the spectrum of the output yx(t) is obtained:

Yx(f) = Y(f-rf5 )4.9

or

Y~~~(f)~~~ = -rf 5  /- E-f

r CO m=_" k=_N12+1

- k+mN~f) 4.10

The system under consideration hais a fixed system sample

rate f. , and thus the second sample rate f S2is constrained

to the value f S2= * Now define a parameter a as the

ratio of the first sampling rate f 5 tof
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Nfo
a -

Substituting 4.11 into 4.10,

f 1 N12-1
Yb a) sinc(y) y 6([f-rfs]r=-- as =- k=-N/2+1

-k,

[+mcaf s ) 4.12

The resultant spectrum YX(f) has a replica of the boxcarred

spectrum at each multiple of f., as is expected for any

sampling operation, but with the effective frequency

scale of each replica about the appropriate value of rfs

variable with a. Since a is proportional to fo, the

frequency of the fundamental of the harmonic set generated

can be controlled by controlling a. From 4.11 fs = afs,
1 1

or = ar- , so that the spacing between samples for
S Sl

the second iampling process is a times the spacing of

samples going into the boxcar filter. The latter samples

are stored one to each memory cell in the computer memory,

and thus 1/fs in terms of memory cell spacing is unity.

The spacing in memory cells tetween samples for the

output sampling process is therefore a. But this spacing

is Just what was previously defined as the quantity F,

and from 4.5 and 4.11, F = a is easily verified.
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The initial sampling process results in a non-band

limited spectrum even though the original spectrum Y(f)

was band-limited. The effective boxcar filtering

operation reduces the amplitude of the replicas generated

by the first sampling operation, but since the sinc(f/fs)
B

envelope only falls off as 1/f, considerable power still

remains in the undesired replicas. After the second

sampling operation these reduced but non-zero replicas

of the desired spectrum in the vicinity of +f s, 2fs,

etc., of the box-carred spectrum may be aliased back

into the band of interest by the resampling operation,

and in general will appear as weak, discrete frequencies

not har , .Ically related to the desired fundamental

fo" These artifacts may be quite large if generated

by harmonics in the original waveform with frequencies

close to 1/2 of the original sample rate f This is

due to the fact that the sinc(f/fs ) envelope of the box-

carred spectrum is down only about 4db at the Nyquist

frequency f /2. If the original waveform is oversampled

by a factor of two such that all non-zero harmonics are

below fs /41, the minimum attenuation provided by the

sinc envelope becomes a little better than 10db, and

increases by 6db for each additional factor of 2 in

oversampling (see Figure 4.5). Thus by increasing the

memory required to store the waveform it is possible

to make artifacts as small as desired. However, the

6db per octave roll-off of the sinc function makes

this a fairly expensive solution to the problem.
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If the memory address increment F which determines

the fundamental frequency of the output is fluctuated

rapidly by some small amount, t', effect is to smear

the power at each of the harmonically related disc. ete

frequencies over some finite bandwidth. The bandwidth

of the nth harmonic will be n times the bandwidth of

the fundamental. In addition to being useful to generate

finite bandwidth narrowband processes, this phenomena

also tends to smear out the discretes in the band of

interest generated by aliasing. Unfortunately if highly

stable discretes are desired, the aliased contributions

may still be unacceptably large.

Mori exotic interpolation schemes or other prefiltering

operations could be performed on the stored waveform

prior to resampling to reduce aliasing, but even linear

interpolation requires a multiplication per sample, and

therefore it as well as more sophisticated filtering

schemes are impractical to implement.

C. Stochastic Filtering

Although conventional filtering algorithms are

impractical, an effective prefiltering operation can

be performed by "jittered" resampling, and thus the

aliasing problem can be :educed. The "Jittered" sampling

technique is quite attractive relative to more straight-

fox,ward prefiltering methods due to its extremely simple
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implementation. Practical application to the Memory-

Read-Out signal generation problem will be discussed

after deriving the spectrum of the output if "Jittered"

-sampling is employed.

The problem is as follows: the function s(t)is

given with Power Spectral Density CPSD) 0 (f) and
S

autocorrelation function (ACF) s (-r). Therefore

(.) -StT s(t+T) 4.13

and

0s(f) = f¢s (-) edJ2lTfdT 4.14

is Just the Fourier Transform of *s(t).
Samples are now taken of s(t) according to the "Jittered"

thsampling scheme; i.e., the i sample is taken at the time

i Ts + vi) where Ts = i/fs is the period associated with

the underlying basic sample rate fs, and the vi ar-

independent, identically distributed random variables

with probability density function (PDF)
V

PV i(t) = p(t) , all i 4 .!

The sample values of s(t) obtained are then assigned

to a regularly spaced impulse train of period 2s to

form a sampled function sX(t) given by
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sx(t) = s(nT5 + v) 6(t -nT)

The problem thus is to determine the PSD of sx(t) in

terms of 0. (if), the PSD of s(t); and of p(t), the PDF of

the

Consider the sequence autocorrelation of the original

"Jittered" samples of s(t):

R(r) =s(nT 5 + Vn )s((n+r)T5 + Vn4.17

wliere the average is to be taken over all n anid over the

Vj For vn and vn~ identically equal to zero, R(r) is

just the autocorrelation of s(t) for rT. delay, i.e.,

R(r) = ~(rT5) all v 0 41.18

For an arbitrary distribution function p(t) for the

V2R(r) is the statistical average of OS (T) taken over

all possible vn~ !nv For r~O the v are independent,

and the PDF of the difference of two of the vi is just

the auto-correlation of the PDF of each. Let pt)be

the PDF of vn+r -vn, i.e..,

Pd(t) =f p(a) p(cy+t)da 41.19
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Then the desired sequence autooorrelation function R(r)

is given by:

R(r) = ()*(rTs + t)dt; r4.20

Since Pd (t) is real, positive and symmetric, 4I.20 may

equivalently bc iwritten

R(r) Pd d(t) 0 (rT5  t)dt; r$O * 4.21

Iftevalues of R(r) are now assigned to a regularl-,

spcdimpulse train of period Ts, the discrete

autcorelaionfunction of Lhe sampled function sX(t)

is obtained. Let RX (T) be the autocorrelation function

of sx(t) .Then

RX(T) = R(r) 6(-r -rT ) + Rx(O) 4 1.22

rXQ

RX(O) is unaffected by the ji*:tering operation and

therefore must be handled as a separate case. Substituting

for R(r)

RX(T) ~ f'pd(t) s(rT3-t)dtJ5(r.-rTs) + Rx(O)

r~O 4.23
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Now define a continuous autocorrelation function

R(r) as follows:

R(T) = f Pd(t )s(-r-t)dt . 4.24
-m

If R(T) is sampled at points rTs, the result is RX(.r)

except for r=o. Let the Fourier transform of R(T)

be fR(f) , and the Fourier transform of Pd(t) be Pd(f).
AR

Then from 4.24

R(f) = d(f)Os(f) 4.25

Finally, since RX(T) is (except for -=o) Just a sampled

version of R(T), the Fourier transform of RX(r) is given

by

w eo

Rx(f) *RVf-rfs ) A- K K + P .(f-rfs)os(f-rf s )

4.26

The constant K arises due to the fact that RX(O) p R(O)

since

RX(O) E{[S(nTs + v ) 2(0) 4.27
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and

R(0) = Pd(t) s(t)dt 4.28

which is equal to *s(0) only if Pd(t) 6(t). Thus Rx(T)

can be written

RcT) = [ R(r) 6('-rT.) + [s (0) -R(O)] a(T). 4.29

The transform of the last term in 4.29 yields the constant

K

K * s(0) - R(0) , 4.30

or using 4.28,

K = s(O) - f P(t) 0s(t) dt 4.31

The effect of the "Jittered" sampling can be seen

from 4.25 and 4.26 to be almost equivalent to passing

s(t) through i filter with an impulse response equal

to the PDF of the vi, p(t). However, the one anomaly

of stochastic filtering is the white noise term K

which is added to the PSD of the final output. The

significance of the white noise term is apparent if

one realizes that the stochastic filtering is a power
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lossless operation, and that the power-missing from the

attenuated frequencies shows up as white noise. Since

the objective was to reduce the discretes generated in

the band of interest by aliasing, trading them off for

white noise is usually quite acceptable. Further

properties of "Jittered" sampling are discussed in

Balakirshnan(2) and Shapi:ro and Silverman

The implementation of the stochastic filter by

jittered sampling in the memory read-out algorithm

is fairly simple compared with the computational

requirement of normal filtering methods, assuming that

the v are readily available. After the block position

or phase angle has been determined as before and saved,

thc v is added to the phase and the result taken modulo

N to determine the memory cell to be accessed.

As a simple example, let p (t) be uniform over

one sample period Ts. The transform of a pulse of

width T. is the familiar Ts sinc(fTs). Since Pd(t)

is the autocorrelation function of pW2 t), d(f) becomes
Vi

pd(f) = T2 sinc2 (fT5 ) 4.32

This has its first zero at f = fs = l/T. Since the

power spectrum of the signal to be resampled was shown

to be already reduced by a sinc2 (fTs) envelope due to

an effective "box car" filter, the final spectrum

before resampling has been reduced by sinc4(fTs) with.
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uniform Jittered sampling. More desirable filter

functions may be obtainable by careful design of the

vi density function, but the practical advantage of the

technique would soon disappear.

In summary of Chapter 4 then, a technique for

generating harmonically related narrowband processes

directly in the time domain has beendescribed.

The technique is designed to be implemented in a digital

system where the output must be constrainedto signal

samples at some system-determined sample rate. The

spectrum of the resulting generated signal was described

ahd shown to have potentially severe aliasing problems.

Increased memory for waveform storage, interpolation

schemes, and finally a statistical filtering technique

based on "Jittered" sampling are discussed as means

of reducing the aliasing to tolerable levels.
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CHAPTER V

SUMMARY AND CONCLUSION

In summary, several algorithms for the generation

of steady-state signal components with all-digital systems

have been presented and analyzed. Two abbreviated IFFT

4lgorithms for the synthesis of a broad-band random process

having a controllable Power Spectral Density function were

analyzed and compared to a more conventional approach of

pa~sing white noise through a Finite Impulse Response (FIR)

filter. The simpler of the two algorithms involves concate-

natiing segments of signal having an appropriate spectral

composition, and results in a savings of 75% of the computa-

tional effort required in the FIR approach. However, the

synthesized signal has a discontinuity at each segment

boundary which may restrict its application. The second

algorithm employs summing an overlap of appropriately

weight - segments to eliminate the discontinuity, although

the derivatives at the segment ends are still discontinuous.

The overlap version results in a 50% savings in computation

load over the FIR approach.

For the synthesis of discrete components and very

narrow-band processes, a pair of algorithms for generating

approximation segments of the desired signal by inverse

FFT were investigated. Here the simplest version employing
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no overlap in output segments gives relatively poor

results. On the other hand, a corresponding version

employing the sum of appropriately weighted and overlapped

segments gives ve- good results with a minimal computa-

tional effort. The two overlap algorithms, one for

broadband components and one for narrowband or discrete

components, may be combined to produce efficiently

with an FFT based system a signal having both types

of components.

Finally, an algorithm for producing harmonically

4rich, periodic signals in the time domain was developed

ahd analyzed and shown to have potentially severe

aliasing problems. Various techniques to minimize

the undesirable effects of the aliasing are discussed.

The result is an efficient, highly implementable

algorithm for generating harmonically related signal

components.

The synthesis of signals with specific controllable

characteristics is a relatively new and still developing

part of the signal processing field. As the quality

and sophistication of signal generation systems improves,

more and more applications are found for their outputs.

Especially with all digital systems, the ability to

produce signals modeling problems with random processes,

and yet to be able to reproduce the synthetic signal

exactly or with a controlled perturbation is extremely
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useful in evaluating the performance of a signal

analysis system. The application to simulators,

* particularly in training devices, is readily apparent.

However, although many new doors are opened by the

advent of practical, all-digital signal synthesis, the

results of this paper clearly indicate the need for

careful analysis in applying the various techniques

to any specific problem.

Several of the results in the paper have potential

application in other areas of digital signal processing.

The technique discussed in Chapter 3 of summing over-

lapped time blocks which have been derived by inverse

transforming Hanning weighted spectra forms the basis for

an extremely flexible FFT filtering algorithm.

The results found in Chapter 4 for the spectrum of

a resampled digital signal stored in a delay line or

memory is of interest, for example, in a system where

a sampled signal passing through a shift register

delay line is observed by a tap, the position of which

is changing with time. Also in Chapter 4, the concept

of using randomly disturbed sampling times to accomplish

at least iudimentary filtering as an aid in minimizing

aliasing would seem useful, although over a decade

has passed since Balakrishnan's paper and little or no

application has been made of which the author is aware.
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An effort to determine what useful filter functions

might be obtainable under the constraints imposed on

its Fourier transform would probably be worthwhile.

8
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APPENDIX A

Consider a truncated summation of the form

21-

3 A n (Al)
nwO

* Manipulating,

NS K n )'N +3-1 (A2)
awl

s A S 1- N (A3)

or

Sa - N (A)

Suppose A is a complex exponential such that S is of the form

2w
N-1
Se (A5)
n-0

2w

Applying A.l with A - e
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S . 1 w (A6)

-a-e
Factoring an e from the numerator and an e from the

denominator,

S ejTU e jwU e-JTu

-u e " (A7)

• • -e•

or

NI1

S e (sin vu) (A)
sin

Using the definition

sindN(u) 1 sin wu (A9)
sin

the desired result is

ni 2w N i

i e-Ne sind N(u) (Alo)
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The sindN(u)'fnto is ~plotted inFigure -Al for N=9.

Note that ;for u equal to integral multiples of N, the

*sind has unit magnitude; for all other ihteg;'al values

of'u. the Bind is zero. For even, N,, the peaks alternate

biteenplu an mius ne;for odd N all peaks are

positive unity. The~snu is always periodic with

period,2N; the iiagr.i ;6 (or square) 'Is periodic with

period N.
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APPENDIX B

This appendix derives closed form expressions for

the infinite series

Ssind(u+rN) (Bi)

and-,

44

S2(u,,N) I s8nc2 (u+rW) (B2)

that is, the sum of a periodic series of sinc(u) functions

or their squares,, spaced along the u axis by a distance N.

Consider first the spectrum G(f) of a function g(t.)

consisting of a series of N impulses, N odd, with unit

spacing and centered at t-o as shown in Figure BI.

Direct computat4on of G(f) gives

0(f) = f gCt) eJ2ft dt (B3)
-,m

(N-1)/2
0(f) a (t-n) e" 2 f dt (B4)--np--CN 1)/2

Interchanging the order of summation and integration
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_(N-1) _(-3 -1 0 1 N-3 N-1

BLOCK OF N UNIT IMPLUSES, N ODD

FIGURE BI
- 4

N-i N N-l N-2N:2j :N-2

o 1 21 I 1 • 0 2 1 0
-N -N+1 -N+2 " -2 -1 0 1 N-2 N-1 N

BLOCK OF 2N-I IMPULSES, TRIANGULAR WEIGHTING

FIGURE B2
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-a .(f) (n-1)/2 f a 6(t-n)e 2 f dt (B5)

N-i

G G(f) - ej2 wfn (B6)

Writing out the series,

J,2f3 2wfv 2NGM )e e ~ seerN2  + .

I (B7)

Factoring out an e 2 J

0(f)- 3rN)Ni 8 Jif (B8)
nuo

Using AlO, with u Nf

GM) etCi * e-3wr(N-i) *N sindN(Nf) (B9)

or

0(r -N sindN(Nf) .(BlO)

93



NOLTR 74-215

Now consider the same function g(t), but derived as an

infinite impulse train

gt(t) 6 (t+n) (El)

*multiplied by a unit pulse of width N

* N

Ip(t) (B12)

0 >'.N

The spectrum of the impulse tr'ain is~

a'(f) a -6(f+r) (B13)

and the spectrum of the pulse is

P(f) =N sine(Nf) (B14~)

The spectrum of the product is the convolution-.of

Gf(f) with P~f):
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-SO~) , 'GI(v.)P(f-,v)dv (BI5)-

G() $ 6(vir) N sinc[(f-v)N]dv (B6)

Again interchahging the-order of summation and integration,

G(f) N f sira CCf-v,)Nj6(v+r,)d. (B17)

or

0(f) - N sinc[fN+rNj (B18)
ram

But both B10 and B18 are e'-pressions for the spectrum of

the same function g(t), and thus must be equal. Therefore,

letting N- u.

sinc(u+rN) - Sl(u,N).sindN(u) (B19)

To obtain the desired relation for S2(u,N), consider the

auto-convolution of g(t). By forming the auto-convolution

of a series of finite pulses of width 6 and height 1/6,

and then taking the limit as 6 + 0, it can easily be seenthat

the auto-convolution of g(t) is a series of 2N - 1 impulses
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g2 (t) with a triangular weighting as illustrated in

Figure B2. The spectrum of g2 (t) is of course Just

the square of G(f),

G2(f) " N2sind (Nf) (B20)

But g2 (t) can also be derived by multiplying the impulse

train-E g(t)-by a triangular pulse p2(t)

N(l + t/N); - N <t < 0

P2 - N(l - t/N); 0. ct <N (B21)

0 ; Itl N

The spectrum of p2 (t)"is'

P2(f) N 2 sinc2(Nf) (B22)

since the triangular pulse is Just the auto convolution of

the square pulse B12, and therefore has a spectrum equal to
P 2 (f). Convolving P2(f) with G'(f),

02(f) P 2(f-v)G'(v)dv (B23)
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af() N 2 sine2 C(f-v)N]J 6(v+r)dv (B24)

Interchanging summation and integration,

a2(f) a N2  fl sinc2[(f-v)N]J(v+r)dv (B25)

or

G2(f) * N2  sinc2(Nf+rN) (B26)

Equating B21 with B27,

N2  sinc2(Nf + rN) - 2 sind 2 (N) (B27)N

or, letting Nf u,

sine2(u rN) S 2 (u,N) 'indN(u) (B28)
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